Publications

  1. Elimination of the bias-stress effect in ligand-free quantum dot field-effect transistors.
    Tolentino, J., Gibbs, M., Abelson, A., Law, M. The Journal of Chemical Physics, 159, 044709 (2023). PDF Online Article
  2. Atomic lattice-resolved electron tomography of a 3D self-assembled mesocrystal.
    Chu, X., Abelson, A., Qian, C., Igouchkine, O., Field, E., Ma, K.-L., Law, M., Moule, A. J. Advanced Functional Materials, 2301026 (2023). PDF Online Article
  3. High-mobility hole transport in single-grain PbSe quantum dot superlattice transistors.
    Abelson, A., Qian, C., Crawford, Z., Zimanyi, G. T., Law, M. Nano Letters, 22, 9578–9585 (2022). PDF Online Article
  4. Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices.
    Kavrik, M. S., Hachtel, J., Ko, W., Qian, C., Abelson, A., Unlu, E. B., Kashyap, H., Li, A.-P., Idrobo, J.-C., Law, M. Nature Communications, 13, 6802. (2022). PDF Online Article
  5. TOC image
    Photobase-triggered formation of 3D epitaxially-fused quantum dot superlattices with high uniformity and low bulk defect densities.
    Qian, C., Abelson, A., Miller-Casas, A., Capp, R., Vinogradov, I., Udagawa, N. S., Ge, N.-H., Law, M. ACS Nano, 16, 3239–3250 (2022). PDF Online Article
  6. pub 69 image
    Silica shell growth on vitreophobic gold nanoparticles probed by plasmon resonance dynamics.
    Engelbrekt, C., Gargasya, Y., Law, M. J. Phys. Chem. C, 125, 25119–25125 (2021). PDF Online Article
  7. pub 68 image
    Evaluation of nanostructured β-Mn2V2O7 thin films as photoanodes for photoelectrochemical water oxidation.
    Gargasya, Y., Gish, M., Nair, V. V., Johnson, J. C., Law, M. Chemistry of Materials, 33, 7743-7754 (2021). PDF Online Article
  8. pub 67 image
    Uniform supported metal nanocrystal catalysts prepared by slurry freeze-drying.
    Yang, A. Y., Law, M. Chemistry of Materials, 33, 256–265 (2021). PDF Online Article
  9. pub 66 image
    Hierarchical carrier transport simulator for defected nanoparticle solids.
    Hansen, C., Unruh, D., Alba, M., Qian, C., Abelson, A., Law, M., Zimanyi, G. T. Scientific Reports, 11, 7458 (2021). PDF Online Article
  10. pub 65 image
    Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots.
    Yun, H. J., Lim, J., Roh, J., Neo, D. C. J., Law, M., Klimov, V. I. Nature Communications, 11, 5280 (2020). PDF Online Article
  11. pub 64 image
    Structural characterization of a polycrystalline epitaxially-fused colloidal quantum dot superlattice by electron tomography.
    Chu, X., Heidari, H., Abelson, A., Unruh, D., Hansen, C., Qian, C., Zimanyi, G., Law, M., Moule, A. J. Journal of Materials Chemistry A, 8, 18254-18265 (2020). PDF Online Article
  12. pub 63 image
    Efficient plasmon-mediated energy funneling to the surface of Au@Pt core-shell nanocrystals.
    Engelbrekt, C., Crampton, K. T., Fishman, D. A., Law, M., Apkarian, V. A. ACS Nano, 14, 5061-5074 (2020). PDF Online Article
  13. pub 62 image
    Electronic passivation of PbSe quantum dot solids by trimethylaluminum vapor dosing.
    Ueda, S. T., Kwak, I., Abelson, A., Wolf, S., Qian, C., Law, M., Kummel, A. C. Applied Surface Science, 513, 145812 (2020). PDF Online Article
  14. pub 61 image
    Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice.
    Abelson, A., Qian, C., Salk, T., Luan, Z., Fu, K., Zheng, J.-G., Wardini, J. L., Law, M. Nature Materials, 19, 49-55 (2020). PDF Online Article
  15. pub 60 image
    Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots.
    Geremew, A., Qian, C., Abelson, A., Rumyantsev, S., Kargar, F., Law, M., Balandin, A. A. Nanoscale, 11, 20171-20178 (2019). PDF Online Article
  16. pub 59 image
    Reversible aggregation of covalently cross-linked gold nanocrystals by linker oxidation.
    Luan, Z., Salk, T., Abelson, A., Jean, S., Law, M. Journal of Physical Chemistry C, 123, 23643-23654 (2019). PDF Online Article
  17. pub 58 image
    Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions.
    Wang, Y., Peng, X., Abelson, A., Xiao, P., Qian, C., Yu, L., Ophus, C., Ercius, P., Wang, L.-W., Law, M., Zheng, H. Science Advances, 5, eaaw5623 (2019). PDF Online Article
  18. pub 57 image
    In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals.
    Wang, Y., Peng, X., Abelson, A., Zhang, B.-K., Qian, C., Ercius, P., Wang, L.-W., Law, M., Zheng, H. Nano Research, 1-5 (2019). PDF Online Article
  19. footprints in sand 4
    Chemical generation of hydroxyl radical for oxidative footprinting.
    Leser, M., Chapman, J. R., Khine, M., Pegan, J., Law, M., El Makkaoui, M., Ueberheide, B. M., Brenowitz, M. Protein and Peptide Letters, 26, 61-69 (2019). Online Article
  20. pub 55 image
    In situ TEM study of the degradation of PbSe nanocrystals in air.
    Peng, X., Abelson, A., Wang, Y., Qian, C., Shangguan, J., Zhang, Q., Yu, L., Yin, Z.-W., Zheng, W., Bustillo, K. C., Guo, X., Liao, H.-G., Sun, S.-G., Law, M., Zheng, H. Chemistry of Materials, 31, 190-199 (2018). PDF Online Article
  21. Charge-transport mechanisms in CuInSexS2-x quantum-dot films.
    Yun, H. J., Lim, J., Fuhr, A. S., Makarov, N. S., Keene, S., Law, M., Pietryga, J. M., Klimov, V. I. ACS Nano, 12, 12587-12596 (2018). PDF Online Article
  22. On the use of photocurrent imaging to determine carrier diffusion lengths in nanostructured thin-film field-effect transistors.
    Xiao, R., Hou, Y., Law, M., Yu, D. Journal of Physical Chemistry C, 122, 18356-18364 (2018). PDF Online Article
  23. Structural and magnetic properties of cobalt iron disulfide (CoxFe1-xS2) nanocrystals.
    Gabold, H., Luan, Z., Paul, N., Opel, M., Muller-Buschbaum, P., Law, M., Paul, A. Scientific Reports, 8, 4835 (2018). PDF Online Article
  24. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution.
    Nair, V., Perkins, C. L., Lin, Q., Law, M. Energy & Environmental Science, 9, 1412-1429 (2016). PDF Online Article
  25. Atomistic modeling of sulfur vacancy diffusion near iron pyrite surfaces.
    Zhang, Y. N., Law, M., Wu, R. Q. Journal of Physical Chemistry C, 119, 24859-24864 (2015). PDF Online Article
  26. Synthesis of catecholate ligands with phosphonate anchoring groups.
    Seraya, E., Luan, Z., Law, M., Heyduk, A. F. Inorganic Chemistry, 54, 7571-7578 (2015). PDF Online Article
  27. pub 48 image
    Protein footprinting by pyrite shrink-wrap laminate.
    Lesser, M., Pegan, J., El Makkaoui, M., Schlatterer, J. C., Khine, M., Law, M., Brenowitz, M. Lab on a Chip, 15, 1646-1650 (2015). PDF Online Article
  28. Generating free charges by carrier multiplication in quantum dots for highly-efficient photovoltaics.
    ten Cate, S., Sandeep, C. S. S., Liu, Y., Law, M., Kinge, S., Houtepen, A. J., Schins, J. M., Siebbeles, L. D. A. Accounts of Chemical Research, 48, 174-181 (2015). PDF Online Article
  29. Carrier transport in PbS and PbSe QD films measured by photoluminescence quenching.
    Zhang, J., Tolentino, J., Smith, E., Zhang, J., Nozik, A., Beard, M., Law, M., Johnson, J. C. Journal of Physical Chemistry C, 118, 16228-16235 (2014). PDF Online Article
  30. pub 45 image
    An inversion layer at the surface of n-type iron pyrite.
    Limpinsel, M., Farhi, N., Berry, N., Lindemuth, J., Perkins, C. L., Lin, Q., Law, M. Energy & Environmental Science, 7, 1974-1989 (2014). PDF Online Article
  31. Phonons do not assist carrier multiplication in PbSe quantum dot solids.
    ten Cate, S., Liu, Y., Schins, J. M., Law, M., Siebbeles, L. D. A. Journal of Physical Chemistry Letters, 4, 3257-3262 (2013). PDF Online Article
  32. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition.
    ten Cate, S., Liu, Y., Sandeep, C. S. S., Kinge, S., Houtepen, A. J., Savenije, T. J., Schins, J. M., Law, M., Siebbeles, L. D. A. Journal of Physical Chemistry Letters, 4, 1766-1770 (2013). PDF Online Article
  33. High charge carrier mobility enables exploitation of carrier multiplication in quantum dot films.
    Sandeep, C. S. S., ten Cate, S., Schins, J. M., Savenije, T. J., Liu, Y., Law, M., Kinge, S., Houtepen, A. J., Siebbeles, L. D. A. Nature Communications, 4, Article 2360 (2013). PDF Online Article
  34. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors.
    Otto, T., Miller, C., Tolentino, J., Liu, Y., Law, M., Yu, D. Nano Letters, 13, 3463-3469 (2013). PDF Online Article
  35. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1.
    Liu, Y., Tolentino, J., Gibbs, M., Ihly, R., Perkins, C. L., Liu, Y., Crawford, N., Hemminger, J. C., Law, M. Nano Letters, 13, 1578-1587 (2013). PDF Online Article
  36. Iron pyrite thin films synthesized from an Fe(acac)3 ink.
    Seefeld, S., Limpinsel, M., Liu, Y., Farhi, N., Zhang, Y. N., Berry, N., Kwon, Y. J., Perkins, C. L., Hemminger, J. C., Wu, R. Q., Law, M. Journal of the American Chemical Society, 135, 4412-4424 (2013). PDF Online Article
  37. Increasing the band gap of iron pyrite by alloying with oxygen.
    Hu, J., Zhang, Y. N., Law, M., Wu, R. Q. Journal of the American Chemical Society, 134, 13216-13219 (2012). PDF Online Article
  38. Atmospheric-pressure chemical vapor deposition of iron pyrite thin films.
    Berry, N., Cheng, M., Perkins, C. L., Limpinsel, M., Hemminger, J. C., Law, M. Advanced Energy Materials, 2, 1124-1135 (2012). PDF Online Article
  39. First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite.
    Hu, J., Zhang, Y. N., Law, M., Wu, R. Q. Physical Review B, 85, 085203 (2012). PDF Online Article
  40. The effect of surface stoichiometry on the band gap of the pyrite FeS2(100) surface.
    Zhang, Y. N., Hu, J., Law, M., Wu, R. Q. Physical Review B, 85, 085314 (2012). PDF Online Article
  41. pub 34 image
    Pseudodielectric function and critical point energies of iron pyrite.
    Choi, S. G., Hu, J., Abdallah, L. S., Limpinsel, M., Zhang, Y. N., Zollner, S., Wu, R. Q., Law, M. Physical Review B, 86, 115207 (2012). PDF Online Article
  42. The photothermal stability of PbS quantum dot solids.
    Ihly, R., Tolentino, J., Liu, Y., Gibbs, M., Law, M. ACS Nano, 5, 8175-8186 (2011). PDF Online Article
  43. Robust, functional nanocrystal solids by infilling with atomic layer deposition.
    Liu, Y., Gibbs, M., Perkins, C. L., Zarghami, M. H., Bustamante, Jr., J., Law, M. Nano Letters, 11, 5349-5355 (2011). PDF Online Article
  44. Colloidal iron pyrite (FeS2) nanocrystal inks for thin film photovoltaics.
    Puthussery, J., Seefeld, S., Berry, N., Gibbs, M., Law, M. Journal of the American Chemical Society, 133, 716-719 (2011). PDF Online Article
  45. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells.
    Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., Johnson, J. C. Chemical Reviews, 110, 6873-6890 (2010). PDF Online Article
  46. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids.
    Liu, Y., Gibbs, M., Puthussery, J., Gaik, S., Ihly, R., Hillhouse, H. W., Law, M. Nano Letters, 10, 1960-1969 (2010). PDF Online Article
  47. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
    Zarghami, M. H., Liu, Y., Gibbs, M., Gebremichael, E., Webster, C., Law, M. ACS Nano, 4, 2475-2485 (2010). PDF Online Article
2008-2009 (NREL)
  1. Variations in the quantum efficiency of multiple exciton generation for a series of chemically-treated PbSe nanocrystal films.
    Beard, M. C., Midgett, A. G., Law, M., Semonin, O. E., Ellingson, R. J., Nozik, A. J. Nano Letters, 9, 836-845 (2009). PDF Online Article
  2. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model.
    Law, M., Beard, M. C.,Choi, S., Luther, J. M., Hanna, M. C., Nozik, A. J. Nano Letters, 8, 3904-3910 (2008). PDF Online Article
  3. Schottky solar cells based on colloidal nanocrystal films.
    Luther, J. M., Law, M., Song, Q., Reese, M. O., Beard, M. C.,Ellingson, R. C., Nozik, A. J. Nano Letters, 8, 3488-3492 (2008). PDF Online Article
  4. Structural, optical and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.
    Law, M., Luther, J. M., Song, Q., Hughes, B. K., Perkins, C. L., Nozik, A. J. Journal of the American Chemical Society, 130, 5974-5985 (2008). PDF Online Article
  5. Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol.
    Law, M., Luther, J. M., Song, Q., Beard, M. C., Nozik, A. J. ACS Nano, 2, 271-280 (2008). PDF Online Article
  6. Multiple exciton generation in films of electronically coupled PbSe quantum dots.
    Luther, J. M., Beard, M. C., Song, Q., Law, M., Ellingson, R. J., Nozik, A. J. Nano Letters, 7, 1779-1784 (2007). PDF Online Article
2002-2007 (UC Berkeley)
  1. ZnO-TiO2 core-shell nanorod/P3HT solar cells.
    Greene, L. E., Law, M., Yuhas, B. D., Yang, P. Journal of Physical Chemistry C, 111, 18451-18456 (2007). PDF Online Article
  2. Multi-functional nanowire evanescent wave optical sensors.
    Sirbuly, D. J., Tao, A., Law, M., Fan, R., Yang, P. Advanced Materials, 19, 61-66 (2007). PDF Online Article
  3. Chemical sensing with nanowires using electrical and optical detection.
    Law, M., Sirbuly, D. J., Yang, P. International Journal of Nanotechnology, 4, 252-262 (2007). PDF Online Article
  4. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
    Law, M., Radenovic, A., Greene, L. E., Kuykendall, T., Liphardt, J., Yang, P. Journal of Physical Chemistry B, 110, 22652-22663 (2006). PDF Online Article
  5. Solution-grown ZnO nanowires.
    Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D., Yang, P. Inorganic Chemistry, 45, 7535-7543 (2006). PDF Online Article
  6. Semiconductor nanowires for subwavelength photonics integration.
    Sirbuly, D. J., Law, M., Yan, H., Yang, P. Journal of Physical Chemistry B, 109, 15190-15213 (2005). PDF Online Article
  7. pub 15 image
    General route to vertical ZnO nanowire arrays using textured ZnO seeds.
    Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G., Yang, P. Nano Letters, 5, 1231-1236 (2005). PDF Online Article
  8. Thermally driven interfacial dynamics of metal/oxide bilayer nanoribbons.
    Law, M., Zhang, X.-F., Yu, R., Kuykendall, T., Yang, P. Small, 1, 858-865 (2005). PDF Online Article
  9. Nanowire dye-sensitized solar cells.
    Law, M., Greene, L. E., Johnson, J. C., Saykally, R. J., Yang, P. Nature Materials, 4, 455-459 (2005). PDF Online Article
  10. Optical routing and sensing with nanowire assemblies.
    Law, M., Sirbuly, D. J., Pauzauskie, P., Yan, H., Maslov, A. V., Knutsen, K., Ning, C.-Z., Saykally, R. J., Yang, P. The Proceedings of the National Academy of Sciences, USA, 102, 7800-7805 (2005). PDF Online Article
  11. ZnO nanowire transistors.
    Goldberger, J., Sirbuly, D. J., Law, M., Yang, P. Journal of Physical Chemistry B, 109, 89-14 (2005). PDF Online Article
  12. Nanoribbon waveguides for subwavelength photonics integration.
    Law, M., Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J., Yang, P. Science, 305, 1269-1273 (2004). PDF Online Article
  13. Semiconductor nanowires and nanotubes.
    Law, M., Goldberger, J., Yang, P. Annual Review of Materials Research, 34, 83-122 (2004). PDF Online Article
  14. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers.
    Johnson, J. C., Knutsen, K. P., Yan, H., Law, M., Zhang, Y., Yang, P., Saykally, R. J. Nano Letters, 4, 197-204 (2004). PDF Online Article
  15. ZnO nanoribbon microcavity lasers.
    Yan, H., Johnson, J. C., Law, M., He, R., Knutsen, K. P., McKinney, J. R., Pham, J., Saykally, R. J., Yang, P. Advanced Materials, 15, 1907-1911 (2003). PDF Online Article
  16. Low-temperature wafer-scale production of ZnO nanowire arrays.
    Law, M., Greene, L. E., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., Yang, P. Angewandte Chemie, International Edition, 42, 3031-3034 (2003). PDF Online Article
  17. SnO2 nanoribbons as NO2 sensors: insights from first principles calculations.
    Maiti, A., Rodriguez, J. A., Law, M., Kung, P., McKinney, J. R., Yang, P. Nano Letters, 3, 1025-1028 (2003). PDF Online Article
  18. Dendritic nanowire ultraviolet laser array.
    Yan, H., He, R., Johnson, J. C., Law, M., Saykally, R. J., Yang, P. Journal of the American Chemical Society, 125, 4728-4729 (2003). PDF Online Article
  19. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature.
    Law, M., Kind, H., Messer, B., Kim, F., Yang, P. Angewandte Chemie, International Edition, 41, 2405-2408 (2002). PDF Online Article
  20. Functional bimorph composite nanotapes.
    Law, M., He, R., Messer, B., Law, M., Yang, P. Nano Letters, 2, 1109-1112 (2002). PDF Online Article
  21. Nanowire ultraviolet photodetectors and optical switches.
    Kind, H., Yan, H., Messer, B., Law, M., Yang, P. Advanced Materials, 14, 158-160 (2002). PDF Online Article